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A General Proof
of Floquet’s Theorem

The purpose of this correspondence is to
demonstrate the form of modes which are
propagating in periodic structures. Although
this form has long been used through an ex-
tension of Floquet’s theorem for ordinary
differential equations with periodic coef-
ficients to modes propagating in periodic
electromagnetic structures, (See [1]~[6]) its
general validity for these modes, which are
determined by partial differential equations,
has not been demonstrated.

We shall employ an abstract notation
similar to that used by Friedman [7] and
Rumsey [8]. By a propagating mode we
understand a source free solution to Max-
well’s equations satisfying certain of the
boundary conditions. For closed structures
the traunsverse boundary conditions shall be
satisfied, e.g., the waveguide modes in a
waveguide. For open structures the bound-
ary conditions on the structure shall be
satisfied and the field shall decay expo-
tentially away from the structure, e.g., sur-
face waves on a dielectric slab. Thus, in
abstract notation, if 8 is the space of all
fields which satisfy the required boundary
conditions, then ¥ is a mode if ¥ is in § and
if ¥ satisfies the equation (Maxwell’s equa-
tions)

Ly =0 (1)
i.e., the null space of L is the set of modes of

the structure. For clarification, (1) expressed
in matrix form is
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Let us suppose that 2 is the longitudinal
coordinate along which the structure is

periodic. We define the translation operator
T by the following equation

T8 = 6@+ p) &)

where p is the period of the structure. Since
the structure is periodic, and since §/9s
=d/d(z+p), it is clear that the null space
of L is an invariant subspace of 7" In addi-
tion, we define the scalar product in 8 as
follows (* denotes complex conjugate)

(¥, )
dedy¥*(xys)®(x v, x). (4)

o
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—c0 cross section

The adjoint operator 7 of T can be shown
to be the inverse T of T as follows

¥, T®)

= f.‘:dg f fc s.dxdy\lf*(x, y, )®(x, y, 2 + p)

=f dz'ff dxdy

Y(x, v, 2" — p)B(x, ¥, &)
= (1w, @) = (T'w, ®). ®)
Since T is not self-adjoint we can not assume

that its eigenvectors span the null space 8
of L (modes of the structure). However,! we
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can assume that the generalized eigenvec-
tors of T span the space 8. The generalized
eigenvectors of T in § are all those vectors
¥ such that there exists an integer # and a
scalar £ such that

(T — H™¥ = 0. ©)

The rank of the generalized eigenvector is
the smallest integer # such that (6) still
holds. Thus, a generalized eigenvector of
rank one is simply an eigenvector. We shall
demonstrate that the operator T has no
generalized eigenvectors of rank higher than
one and thus its eigenvectors span the null
space of L. (The null space of L is an in-
variant subspace of T.)

Suppose the ¥’ is a generalized eigen-
vector of T of rank two; then

(T - ™' = ]
and
(T — )V =& =0 ®)

where ® must be an eigenvector of T by vir-
tue of (7). One notices that if ¢-® is added
to ¥’ that the resulting vector ¥ still satisfies
(7) and (8), and is thus still a generalized
eigenvector of rank two (where a is any
constant). Also since {(®, &) is a real constant
greater than zero we can choose ¢ to be
-,
(@, ®)
and thus insure that
¥, @) = (' + a®, @) = (¥, @)

v, @)
T (3, ®)

{®,®) =0. (10)

We now examine the following scalar prod-
uct in light of (8) and (10).

but
(@, (T — O)¥) = (&, TV) — K&, T) = (3, TT)

= (T8, %) = - (8, %)

=0. (1)

That ¢ is nonzero is an obvious consequence
of the fact that T is the translation operator.
Thus the assumption that 7" has a gen-
eralized eigenvector of rank two results in
the contradiction shown in (11). Obviously,
since T has no generalized eigenvectors of
rank two, it can have no generalized eigen-
vectors of higher rank; for, if ¥,, is a gen-
eralized eigenvector of rank m >2 then

(T — 2, = ¥y 5 0
and

(T — )% %0 but (T — £2F; = 0.

Hence, ¥, is a generalized eigenvector of
rank two which we have shown that T does
not possess.

Since the generalized eigenvectors of T
span the null space of L, and since all the
generalized eigenvectors of T are ordinary
eigenvectors, then the eigenvectors of T"span
the null space of L. Thus we may use the
eigenvectors of T as a set of basis vectors for
the modes of the periodic structure. Hence

May

we can obtain all modes by vectors which
satisfy the following relation

T = 1. 12)
Choose B¢ such that e=/Por =¢, then from (12):
Bz + p) = P (). (13)

Let

&' (3) = ¢9Pop
then (13) becomes

e PolADE! (5 + p) = ¢* TP (3)

or

(s +p) = ()

Q.ED.

For further elaboration, since ®’ is a periodic

function of z, we may express it as a Fourier
series in z,

(ﬁl(x’ 3’, Z) = Z q)n(xy y)e(—'ﬂﬂ’n/p)z.

Thus we have demonstrated that the form of
modes propagating in periodic structures is
the well known Floquet series:

[Ex(x, ¥, %)
Ey(, v, 2)
E.(x, v, )
Hy(x, v, 5)
Hy(x, 9, 3)
e

Egn(x, %)
|E1/n<x; )

_ 2 | Ealz, ¥)
= |Han(%, )
Hyn(%,3)
Hen(, 3)

Similar relations can be derived in an
analogous manner for structures with sym-
metries such that the null space of L is an
invariant subspace of the particular sym-
metry operator involved and if the adjoint
of the symmetry operator is the inverse of
that symmetry operator.

For convenience, the function F(r, 8, 3)
is introduced to describe the various struc-
ture symmetry properties. For example, the

geometry of periodic structures is described
by

®(x, y,2) =

¢~ Botenmip)z, 14

F(r, 0,2+ p) = F(r, 9, 2).

Other structures to which the techniques of
this appendix can be applied are:

1) axial reflection symmetry (about the
plane z=23,)

F(r, 0,22 — 3) = F(r, 8, 2).

2) Angular rotation symmetry (about
the structural axis)

Elr, 0 +v,2) = F(r,6, 2).

3) Angular reflection symmetry (about
the half plane 0 =6;)

F(r, 20, — 0, 2) = F(r, 0, 2).

4) Combined angular reflection sym-
metry (about the half plane §=8)
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and axial reflection symmetry about
the plane s=2)

F(r, 200 — 0, 250 — 3) = F(r, 0, 2).

5) Combined angular rotation symmetry
(about the structural axis) and axial
reflection symmetry (about the plane
4 =Zo)

F@r,0+ 4y, 23— 3) = F({, 0, 3).

Screw symmetry (rotation about the
structural axis combined with trans-
lation along it)

F(r,0+y¢,z+38) = F(r, 0, 3).

7) Glide symmetry (angular reflection
about the half plane §=8, combined
with translation of one-half period
along the structural axis)

F(r, 200 — 0,z + p/2) = F(r, 0, 2).

Some important consequences of these sym-

metries are discussed in the article by
Crepeau and Mclsaac [9].
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Field Measurements in a Small
Cross Section Guide Loaded
with Magnetized Ferrite

By solving the Maxwell’s equations for a
rectangular guide partially filled with mag-
netized ferrite one finds that in particular
conditions to be specified later for the
geometry and the applied magnetic field only
modes with phase velocity directed in one
sense can propagate. This is the basis for the
so-called thermodynamical paradox. The
present work was carried out in order to
experimentally investigate the microwave
e.m. field in such a structure and compare
the results with the theoretical predictions
which we summarize here briefly.
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Fig, 1.

We assume the configuration and nota-
tions shown in Fig. 1 (indefinite in the ¥y
direction). We assume for the microwave
field a dependence exp(—kyx— +hyy—k.2)
with the coordinates.

The characteristic equation of the sys-
tem was numerically solved by Barzilai and
Gerosa for a number of cases ([1], {2], [3])
and the following main results were estab-
lished:

1) For a given ferrite the solutions of the
characteristic equation depend on the ratio
w/wp between the working frequency and the
resonant frequency wo=~H.

2) For 0 <pj <m2 (i.e., for

assuming the tensor permeability in the
form:

m Jus O
pw=mpo| —Jjur m O
0 0 1
with
W Wm
1=1+——— and ;=
M 6002 —_ 602 wUZ . wm2

where w,, =4myuo), a class of unidirectional
propagating modes is found (the ferrite-
dielectric and ferrite-metal modes of Seidel
and Fletcher [6]). It is possible to choose the
dimensions of the guide and the thickness of
the ferrite slab in such a way that, within a
given range of the applied magnetic field,
these unidirectional modes be the only prop-
agating modes, all higher order modes (the
ferrite-guided modes following Lax’s classi-
fication [5]Y) being under cutoff. The situa-
tion previously described gives rise to the
so-called thermodynamical paradox, be-
cause all the propagating modes (nonat-
tenuated for lossless ferrite) have phase
velocity in one direction and no mode
propagates in the opposite direction.

We recall that this result applies to an
indefinite structure and does not include all
the modes with complex propagation con-
stants which exist also for lossless ferrite,
and are actually the only existing modes for
lossy ferrite.

In order to verify these theoretical results
we considered a small cross section guide
with dimensions 10.25 by 5.45 mm loaded
with a ferrite slab 1.5 mm thick against the
side wall. The ferrite was transversely mag-
netized by an applied dc magnetic field
ranging in value up to +400 Oe. The micro-

7 See Lax and Button [5], p 395.
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wave field was investigated by plunging a
small dipole in the guide and displacing it in
all coordinate directions, making use of some
different mechanical arrangements (de-
scribed in Bujatti [7]). Different ferrite
slabs and different lengths of the slab were
used but no appreciable modification was
found in the field pattern. Also, more ac-
curate polishing of the ferrite slab did not
affect the measurements, i.e., the effects of
accidental imperfections on the surface of
the slab were negligible. Finally, the field
pattern is not affected by the termination,
for a ferrite slab sufficiently long, for any
value of the applied magnetic field. Oace
this was established the guide was left most
of time without any termination and the
probe introduced from the open end. The
measurements were repeated for different
values of the applied magnetic field with a
fixed working frequency equal to 9700 MHz
and the following results were established:

1) No output can be detected at the end
of the structure except when the applied
magnetic field H assumes a value H'<H
<H" (with H'=1500 Oe and H" =2800 Oe
for R4 Ferramic and a working frequency
equal to 9700 MHz as previously stated) if
the ferrite slab is sufficiently long (more
than 3-4 cm).

2) For applied magnetic field values
H'<H<H" the microwave field is expo-
nentially decreasing in the x direction at a
rate varying with the applied magnetic field,
reaching a maximum of about 8 dB/mm in
the center of the range H'—H'/, and a
value of about 3.5 dB/mm at the boundaries
of the range H'—H''. The microwave field
is a surface wave guided by the ferrite [IFig.
2(b)]. By rotating the probe around the x
axis, from the z to the v direction the pres-
ence of a y component of the microwave field
was found, which should not be there if only
the zero-order mode was excited.

For applied field values H'<H<H",
the dependence on y always shows oscilla-
tions of the microwave field along the length
of the guide (Figs. 4, 5, and 6) which disap-
pear for applied magnetic fields out of the
range H'—H'' (Fig. 3. Figures 4 and 5 show
how the pattern changes by moving the
probe along the ferrite slab (z direction) and
away from the ferrite slab (x direction).

Finally, always for applied field values
H'<H<H'", the dependence on z is shown
in Fig. 6 and again oscillations are detected
showing the presence of higher order modes.
A tentative modal analysis mainly suggests
the presence of the second- and four-order
harmonics.

3) For applied magnetic fields H <H’
(including all negative values) and H>H"’
(up to the highest value tested equal to 4400
Oe) the dependence of the microwave field
on %, normally to the ferrite slab, was found
to be sinusoidal; the dependence on vy, along
the length of the guide, was found expo-
nentially decreasing and the field was found
to be constant with z. The overall configura-
tion is the same expected for a TEy in a
guide under cutoff loaded with a slab of
dielectric material having relative dielectric
constant equal to 11 and scalar permeability
varying around one depending on the ap-
plied magnetic field. The attenuation in the
v direction depends on the value of the ap-
plied magnetic field as expected by the



